Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure-guided activity enhancement and catalytic mechanism of yeast grx8.

Identifieur interne : 000598 ( Main/Exploration ); précédent : 000597; suivant : 000599

Structure-guided activity enhancement and catalytic mechanism of yeast grx8.

Auteurs : Yajun Tang [République populaire de Chine] ; Jiahai Zhang ; Jiang Yu ; Ling Xu ; Jihui Wu ; Cong-Zhao Zhou ; Yunyu Shi

Source :

RBID : pubmed:24611845

Descripteurs français

English descriptors

Abstract

Glutaredoxins (Grxs) are wide-spread oxidoreductases that are found in all kingdoms of life. The yeast Saccharomyces cerevisiae encodes eight Grxs, among which, Grx8 shares a sequence identity of 30 and 23% with typical dithiol Grx1 and Grx2, respectively, but it exhibits a much lower GSH-dependent oxidoreductase activity. To elucidate its catalytic mechanism, we solved the solution structure of Grx8, which displays a typical Grx fold. Structural analysis indicated that Grx8 possesses a negatively charged CXXC motif (Cys(33)-Pro(34)-Asp(35)-Cys(36)) and a GSH-recognition site, which are distinct from Grx1 and Grx2. Subsequent structure-guided site mutations revealed that the D35Y single mutant and N80T/L81V double mutant possess increased activity of 10- and 11-fold, respectively; moreover, the D35Y/N80T/L81V triple mutant has increased activity of up to 44-fold, which is comparable to that of canonical Grx. Biochemical analyses suggested that the increase in catalytic efficiency resulted from a decreased pKa value of catalytic cysteine Cys33 and/or enhancement of the putative GSH-recognition site. Moreover, NMR chemical shift perturbation analyses combined with GSH analogue inhibition assays enabled us to elucidate that wild-type Grx8 and all mutants adopt a ping-pong mechanism of catalysis. All together, these findings provide structural insights into the catalytic mechanism of dithiol Grxs.

DOI: 10.1021/bi401293s
PubMed: 24611845


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure-guided activity enhancement and catalytic mechanism of yeast grx8.</title>
<author>
<name sortKey="Tang, Yajun" sort="Tang, Yajun" uniqKey="Tang Y" first="Yajun" last="Tang">Yajun Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027</wicri:regionArea>
<wicri:noRegion>Anhui 230027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiahai" sort="Zhang, Jiahai" uniqKey="Zhang J" first="Jiahai" last="Zhang">Jiahai Zhang</name>
</author>
<author>
<name sortKey="Yu, Jiang" sort="Yu, Jiang" uniqKey="Yu J" first="Jiang" last="Yu">Jiang Yu</name>
</author>
<author>
<name sortKey="Xu, Ling" sort="Xu, Ling" uniqKey="Xu L" first="Ling" last="Xu">Ling Xu</name>
</author>
<author>
<name sortKey="Wu, Jihui" sort="Wu, Jihui" uniqKey="Wu J" first="Jihui" last="Wu">Jihui Wu</name>
</author>
<author>
<name sortKey="Zhou, Cong Zhao" sort="Zhou, Cong Zhao" uniqKey="Zhou C" first="Cong-Zhao" last="Zhou">Cong-Zhao Zhou</name>
</author>
<author>
<name sortKey="Shi, Yunyu" sort="Shi, Yunyu" uniqKey="Shi Y" first="Yunyu" last="Shi">Yunyu Shi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24611845</idno>
<idno type="pmid">24611845</idno>
<idno type="doi">10.1021/bi401293s</idno>
<idno type="wicri:Area/Main/Corpus">000643</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000643</idno>
<idno type="wicri:Area/Main/Curation">000643</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000643</idno>
<idno type="wicri:Area/Main/Exploration">000643</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure-guided activity enhancement and catalytic mechanism of yeast grx8.</title>
<author>
<name sortKey="Tang, Yajun" sort="Tang, Yajun" uniqKey="Tang Y" first="Yajun" last="Tang">Yajun Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027</wicri:regionArea>
<wicri:noRegion>Anhui 230027</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jiahai" sort="Zhang, Jiahai" uniqKey="Zhang J" first="Jiahai" last="Zhang">Jiahai Zhang</name>
</author>
<author>
<name sortKey="Yu, Jiang" sort="Yu, Jiang" uniqKey="Yu J" first="Jiang" last="Yu">Jiang Yu</name>
</author>
<author>
<name sortKey="Xu, Ling" sort="Xu, Ling" uniqKey="Xu L" first="Ling" last="Xu">Ling Xu</name>
</author>
<author>
<name sortKey="Wu, Jihui" sort="Wu, Jihui" uniqKey="Wu J" first="Jihui" last="Wu">Jihui Wu</name>
</author>
<author>
<name sortKey="Zhou, Cong Zhao" sort="Zhou, Cong Zhao" uniqKey="Zhou C" first="Cong-Zhao" last="Zhou">Cong-Zhao Zhou</name>
</author>
<author>
<name sortKey="Shi, Yunyu" sort="Shi, Yunyu" uniqKey="Shi Y" first="Yunyu" last="Shi">Yunyu Shi</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biocatalysis (MeSH)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (isolation & purification)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Nuclear Magnetic Resonance, Biomolecular (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Biocatalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (isolement et purification)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Résonance magnétique nucléaire biomoléculaire (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biocatalysis</term>
<term>Enzyme Activation</term>
<term>Kinetics</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Biocatalyse</term>
<term>Cinétique</term>
<term>Conformation des protéines</term>
<term>Résonance magnétique nucléaire biomoléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxins (Grxs) are wide-spread oxidoreductases that are found in all kingdoms of life. The yeast Saccharomyces cerevisiae encodes eight Grxs, among which, Grx8 shares a sequence identity of 30 and 23% with typical dithiol Grx1 and Grx2, respectively, but it exhibits a much lower GSH-dependent oxidoreductase activity. To elucidate its catalytic mechanism, we solved the solution structure of Grx8, which displays a typical Grx fold. Structural analysis indicated that Grx8 possesses a negatively charged CXXC motif (Cys(33)-Pro(34)-Asp(35)-Cys(36)) and a GSH-recognition site, which are distinct from Grx1 and Grx2. Subsequent structure-guided site mutations revealed that the D35Y single mutant and N80T/L81V double mutant possess increased activity of 10- and 11-fold, respectively; moreover, the D35Y/N80T/L81V triple mutant has increased activity of up to 44-fold, which is comparable to that of canonical Grx. Biochemical analyses suggested that the increase in catalytic efficiency resulted from a decreased pKa value of catalytic cysteine Cys33 and/or enhancement of the putative GSH-recognition site. Moreover, NMR chemical shift perturbation analyses combined with GSH analogue inhibition assays enabled us to elucidate that wild-type Grx8 and all mutants adopt a ping-pong mechanism of catalysis. All together, these findings provide structural insights into the catalytic mechanism of dithiol Grxs. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24611845</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>04</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure-guided activity enhancement and catalytic mechanism of yeast grx8.</ArticleTitle>
<Pagination>
<MedlinePgn>2185-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi401293s</ELocationID>
<Abstract>
<AbstractText>Glutaredoxins (Grxs) are wide-spread oxidoreductases that are found in all kingdoms of life. The yeast Saccharomyces cerevisiae encodes eight Grxs, among which, Grx8 shares a sequence identity of 30 and 23% with typical dithiol Grx1 and Grx2, respectively, but it exhibits a much lower GSH-dependent oxidoreductase activity. To elucidate its catalytic mechanism, we solved the solution structure of Grx8, which displays a typical Grx fold. Structural analysis indicated that Grx8 possesses a negatively charged CXXC motif (Cys(33)-Pro(34)-Asp(35)-Cys(36)) and a GSH-recognition site, which are distinct from Grx1 and Grx2. Subsequent structure-guided site mutations revealed that the D35Y single mutant and N80T/L81V double mutant possess increased activity of 10- and 11-fold, respectively; moreover, the D35Y/N80T/L81V triple mutant has increased activity of up to 44-fold, which is comparable to that of canonical Grx. Biochemical analyses suggested that the increase in catalytic efficiency resulted from a decreased pKa value of catalytic cysteine Cys33 and/or enhancement of the putative GSH-recognition site. Moreover, NMR chemical shift perturbation analyses combined with GSH analogue inhibition assays enabled us to elucidate that wild-type Grx8 and all mutants adopt a ping-pong mechanism of catalysis. All together, these findings provide structural insights into the catalytic mechanism of dithiol Grxs. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Yajun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jiahai</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Ling</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Jihui</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Cong-Zhao</ForeName>
<Initials>CZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Yunyu</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000588987">GRX8 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="Y">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24611845</ArticleId>
<ArticleId IdType="doi">10.1021/bi401293s</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Shi, Yunyu" sort="Shi, Yunyu" uniqKey="Shi Y" first="Yunyu" last="Shi">Yunyu Shi</name>
<name sortKey="Wu, Jihui" sort="Wu, Jihui" uniqKey="Wu J" first="Jihui" last="Wu">Jihui Wu</name>
<name sortKey="Xu, Ling" sort="Xu, Ling" uniqKey="Xu L" first="Ling" last="Xu">Ling Xu</name>
<name sortKey="Yu, Jiang" sort="Yu, Jiang" uniqKey="Yu J" first="Jiang" last="Yu">Jiang Yu</name>
<name sortKey="Zhang, Jiahai" sort="Zhang, Jiahai" uniqKey="Zhang J" first="Jiahai" last="Zhang">Jiahai Zhang</name>
<name sortKey="Zhou, Cong Zhao" sort="Zhou, Cong Zhao" uniqKey="Zhou C" first="Cong-Zhao" last="Zhou">Cong-Zhao Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tang, Yajun" sort="Tang, Yajun" uniqKey="Tang Y" first="Yajun" last="Tang">Yajun Tang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000598 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000598 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24611845
   |texte=   Structure-guided activity enhancement and catalytic mechanism of yeast grx8.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24611845" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020